The Peregrine lunar lander is set to launch on Dec 24
Technology
Peregrine will also be bringing a neutron spectrometer system
(Web Desk) - During the wee hours of Christmas Eve this year, before the gift wrapping begins and the aroma of gingerbread brightens the air, a spacecraft is set to launch to the moon.
It's called the Peregrine Lunar Lander, named for the fastest flying bird on Earth.
If all goes to plan, the robotic avian will zoom through space and fly into the moon's gravitational tides, then meticulously lower its orbit until eventually touching down on a region of ancient lunar lava flows known as the Bay of Stickiness, or Sinus Viscositatis.
This mission will be one for the history books for several reasons, one of which is the fact it'll be the first to launch under NASA’s Commercial Lunar Payload Services (CLPS) initiative, created as a way for the agency to bring payloads to the moon without having to construct all the spacecraft necessary to bring those payloads there. In this case, the company Astrobiotic is behind the Peregrine lander and NASA's paying to stash a few things onboard.
As for the rocket, there's another first to discuss. Peregrine will be lifting off on the first flight of United Launch Alliance's Vulcan Centaur rocket.
The successor to the company's Atlas V and Delta IV vehicles, Vulcan Centaur is, among other things, built to carry quite a hefty amount of stuff to space.
And during a briefing on Nov. 29, representatives with Astrobiotic, United Launch Alliance and, of course, NASA, gathered to discuss what some of the Peregrine payloads are going to be as well as lay out how everything is expected to go down the day before Christmas.
There are five total NASA-sponsored payloads heading to the lunar surface during the mission, and the first is known as the "Peregrine ion trap mass spectrometer," or PITMS.
PITMS will be investigating the lunar exosphere, which is a thin gaseous envelope around the moon, by tapping into mass spectrometry.
Mass spectrometry simply refers to the technique scientists use to measure the mass-to-charge ratio of ions, which are charged particles like hydrogen atoms that hold a positive proton, but no negative electron to balance the proton out.
"The science results from PITMS will aim to improve our knowledge of the abundance and behavior of volatiles on the moon and how they respond to perturbations such as rocket exhaust," Ryan Watkins, program scientist at NASA's Exploration Science Strategy and Integration Office, said.
Peregrine will also be bringing a neutron spectrometer system, or NSS, Watkins explained, which will measure the amount of neutrons near the lunar surface as well as their associated energies. By deduction, NSS will help scientists figure out how much hydrogen is present in the environment as well as levels of soil hydration.
The lunar retroreflector array, or LRA, getting launched on Peregrine in December is a device that consists of eight "retroreflectors," which Watkins compares to small mirrors on a small aluminum support structure:
"The LRA will enable precision laser ranging to help determine the distance from any orbiting or landing spacecraft to the LRA that will be on the lander. So LRA is a passive optical instrument, and it's going to function as a permanent location marker on the moon for decades to come."
The final two instruments NASA's sending up with the mission include the near-infrared volatiles spectrometer system, or NIRVSS, and the linear energy transfer spectrometer, or LETS.